Long Term Ecological Research at Cedar Creek Minnesota, USA

Dr. Sarah Hobbie

Department of Ecology, Evolution and Behavior
University of Minnesota
St. Paul, Minnesota, USA

Minnesota, USA

Minnesota climate (1981-2010)

Source: Minnesota Department of Natural Resources

Minnesota biomes **Boreal Taligrass Aspen Parkland Coniferous Forest** Cedar Creek Ecosystem Science Reserve **Deciduous Forest Prairie** Temperate Grassland

Plants of Cedar Creek

Boreal conifer forest

Temperate prairie grassland

Temperate deciduous forest

Cedar Creek geology

Source: Minnesota Department of Natural Resources

Cedar Creek soils

- extremely sandy (≈ 90%)
- low in organic matter
- well drained
- low in nitrogen
- shallow water table

Upland habitats of Cedar Creek

Quercus savanna and sand prairie

Mesic Acer-Tilia forest

Dry Quercus forest

Abandoned agricultural "old" fields

Wetland habitats of Cedar Creek

Open wetlands

Wooded swamps

US Long-Term Ecological Research (LTER) Program

- Funded by the National Science Foundation
- 28 sites in network
- 6-year funding cycle for individual sites
- Cedar Creek LTER funded since 1982

Cedar Creek LTER Investigators

Sarah Hobbie, co-lead Eric Seabloom, co-lead

Elizabeth Borer Jeannine Cavender-Bares

Forest Isbell

Peter Kennedy

Linda Kinkel

Rebecca Montgomery

Caitlin Potter

Peter Reich

David Tilman

Research Theme: Biodiversity

Research Theme: Interactions between Disturbance & Consumers

Example Research Questions:

- How does fire frequency alter communities
 - and ecosystems?
- How does grazing by bison affect plant community response to fire?

Atmospheric CO2 at Mauna Loa Observatory

Greenhouse Gas Emissions

by major gas

(non-CO2 gases converted with their equivalent "global warming potential")

DATA FROM EPA IMAGE BY J. FOLEY, PROJECT DRAWDOWN ocean-based sink of CO₂

long-term increase in atmospheric CO₂

Fate of Carbon Dioxide Emissions

land-based sink of CO₂

DATA FROM <u>GLOBALCARBONPROJECT.ORG</u> IMAGE BY J. FOLEY, PROJECT DRAWDOWN

Motivating Questions:

- How does plant response to elevated CO₂
 depend on:
 - belowground resource supply?
 - plant species composition and diversity?
 - climate warming?

Peter Reich

Melissa Pastore

Tali Lee

Kally Worm

BioCON Functional Groups

legume

Amorpha canescens Lespedeza capitata Lupinus perennis Petalostemum purpureum

forb

Achillea millefolium Asclepias tuberosa Anemone cylindrica Solidago rigida

C₃ grass

Agropyron repens Bromus inermis Koeleria cristata Poa pratensis

C₄ grass

Andropogon gerardii Boutelous gracilis Shizachyrium scoparium Sorghastrum nutans

Nitrogen

• Ambient, +4 g m⁻² y⁻¹ as ammonium nitrate

N and H₂O constrain how plant growth respond to elevated CO₂

Comparison of monoculture and 4-species plots containing single functional groups

legume

Amorpha canescens Lespedeza capitata Lupinus perennis Petalostemum purpureum

forb

Achillea millefolium Asclepias tuberosa Anemone cylindrica Solidago rigida

C₃ grass

Agropyron repens Bromus inermis Koeleria cristata Poa pratensis

C₄ grass

Andropogon gerardii Boutelous gracilis Shizachyrium scoparium Sorghastrum nutans

Hypothesized functional group responses to elevated CO₂

Theoretical predictions based on physiology

C₃ grass

Photosynthesis should increase with rising CO₂

C₄ grass

Photosynthesis saturated at current CO₂

Unexpected reversal of CO₂ effects on C₃ and C₄ grasses over time

Why the shift over time in CO_2 effects on C_3 and C_4 grasses?

C₃ grass

C₄ grass

CO₂ effects on biomass are related to CO₂ effects on N supply

Diversity effects on biomass have increased over time

Elevated CO₂ effects on biomass are larger in more diverse plots

Planted species richness

Warming, CO₂, and N all increased aboveground biomass Complex interactions

Theoretical predictions based on physiology

C₃ grass

temperature offset by elevated CO₂

C₄ grass

Negative effects of Positive effects of temperature

Warming decreased C₃ grasses and increased other groups

Summary

- Elevated CO₂:
 - Increased biomass when belowground resource supply was relatively high
 - Increased C₃ grasses initially, but C₄ grasses over time
 - Increased biomass more in more diverse plots
- Warming:
 - Increased total biomass because of increased
 C4 grass biomass
 - Effects were as large as CO₂ and N effects

US Long-Term Ecological Research (LTER) Program

- Funded by the National Science Foundation
- 28 sites in network
- 6-year funding cycle for individual sites
- Cedar Creek LTER funded since 1982

