Long Term Ecological Research at Cedar Creek Minnesota, USA ### Dr. Sarah Hobbie Department of Ecology, Evolution and Behavior University of Minnesota St. Paul, Minnesota, USA ### Minnesota, USA ### Minnesota climate (1981-2010) Source: Minnesota Department of Natural Resources ### Minnesota biomes **Boreal Taligrass Aspen Parkland Coniferous Forest** Cedar Creek Ecosystem Science Reserve **Deciduous Forest Prairie** Temperate Grassland ### Plants of Cedar Creek Boreal conifer forest Temperate prairie grassland Temperate deciduous forest ### Cedar Creek geology Source: Minnesota Department of Natural Resources #### Cedar Creek soils - extremely sandy (≈ 90%) - low in organic matter - well drained - low in nitrogen - shallow water table ### Upland habitats of Cedar Creek Quercus savanna and sand prairie Mesic Acer-Tilia forest Dry Quercus forest Abandoned agricultural "old" fields ### Wetland habitats of Cedar Creek Open wetlands Wooded swamps ### US Long-Term Ecological Research (LTER) Program - Funded by the National Science Foundation - 28 sites in network - 6-year funding cycle for individual sites - Cedar Creek LTER funded since 1982 ### Cedar Creek LTER Investigators Sarah Hobbie, co-lead Eric Seabloom, co-lead Elizabeth Borer Jeannine Cavender-Bares Forest Isbell Peter Kennedy Linda Kinkel Rebecca Montgomery Caitlin Potter Peter Reich **David Tilman** ### Research Theme: Biodiversity ## Research Theme: Interactions between Disturbance & Consumers Example Research Questions: - How does fire frequency alter communities - and ecosystems? - How does grazing by bison affect plant community response to fire? ### Atmospheric CO2 at Mauna Loa Observatory #### **Greenhouse Gas Emissions** by major gas (non-CO2 gases converted with their equivalent "global warming potential") DATA FROM EPA IMAGE BY J. FOLEY, PROJECT DRAWDOWN ocean-based sink of CO₂ long-term increase in atmospheric CO₂ ### Fate of Carbon Dioxide Emissions land-based sink of CO₂ DATA FROM <u>GLOBALCARBONPROJECT.ORG</u> IMAGE BY J. FOLEY, PROJECT DRAWDOWN ### Motivating Questions: - How does plant response to elevated CO₂ depend on: - belowground resource supply? - plant species composition and diversity? - climate warming? Peter Reich Melissa Pastore Tali Lee Kally Worm ### **BioCON Functional Groups** legume Amorpha canescens Lespedeza capitata Lupinus perennis Petalostemum purpureum forb Achillea millefolium Asclepias tuberosa Anemone cylindrica Solidago rigida C₃ grass Agropyron repens Bromus inermis Koeleria cristata Poa pratensis C₄ grass Andropogon gerardii Boutelous gracilis Shizachyrium scoparium Sorghastrum nutans ### Nitrogen • Ambient, +4 g m⁻² y⁻¹ as ammonium nitrate ## N and H₂O constrain how plant growth respond to elevated CO₂ ## Comparison of monoculture and 4-species plots containing single functional groups legume Amorpha canescens Lespedeza capitata Lupinus perennis Petalostemum purpureum forb Achillea millefolium Asclepias tuberosa Anemone cylindrica Solidago rigida C₃ grass Agropyron repens Bromus inermis Koeleria cristata Poa pratensis C₄ grass Andropogon gerardii Boutelous gracilis Shizachyrium scoparium Sorghastrum nutans ### Hypothesized functional group responses to elevated CO₂ #### Theoretical predictions based on physiology C₃ grass Photosynthesis should increase with rising CO₂ C₄ grass Photosynthesis saturated at current CO₂ #### Unexpected reversal of CO₂ effects on C₃ and C₄ grasses over time # Why the shift over time in CO_2 effects on C_3 and C_4 grasses? C₃ grass C₄ grass #### CO₂ effects on biomass are related to CO₂ effects on N supply #### Diversity effects on biomass have increased over time #### Elevated CO₂ effects on biomass are larger in more diverse plots Planted species richness ## Warming, CO₂, and N all increased aboveground biomass Complex interactions #### Theoretical predictions based on physiology C₃ grass temperature offset by elevated CO₂ C₄ grass Negative effects of Positive effects of temperature #### Warming decreased C₃ grasses and increased other groups ### Summary - Elevated CO₂: - Increased biomass when belowground resource supply was relatively high - Increased C₃ grasses initially, but C₄ grasses over time - Increased biomass more in more diverse plots - Warming: - Increased total biomass because of increased C4 grass biomass - Effects were as large as CO₂ and N effects # US Long-Term Ecological Research (LTER) Program - Funded by the National Science Foundation - 28 sites in network - 6-year funding cycle for individual sites - Cedar Creek LTER funded since 1982